Note
Go to the end to download the full example code.
Sample and Feature Selection with FPS and CUR¶
- Authors:
Davide Tisi @DavideTisi and Hanna Tuerk @HannaTuerk
In this tutorial we generate descriptors using featomic, then select a subset of structures using both the farthest-point sampling (FPS) and CUR algorithms implemented in scikit-matter. Finally, we also generate a selection of the most important features using the same techniques.
First, import all the necessary packages
import ase.io
import chemiscope
import metatensor
import numpy as np
from featomic import SoapPowerSpectrum
from matplotlib import pyplot as plt
from sklearn.decomposition import PCA
from skmatter import feature_selection, sample_selection
# Note that you will need a the specific new version of skmatter (state: Feb. 2025).
# The link is provided in the environment.yml file that you can find on github.
Load molecular data¶
Load 500 example BTO structures from file, reading them using ASE.
# Load a subset of :download:`structures <input-fps.xyz>` of the example dataset
n_frames = 500
frames = ase.io.read("input-fps.xyz", f":{n_frames}", format="extxyz")
Compute SOAP descriptors using featomic¶
First, define the featomic hyperparameters used to compute SOAP.
# featomic hyperparameters
hypers = {
"cutoff": {"radius": 6.0, "smoothing": {"type": "ShiftedCosine", "width": 0.5}},
"density": {
"type": "Gaussian",
"width": 0.3,
"scaling": {"type": "Willatt2018", "exponent": 4, "rate": 1, "scale": 3.5},
},
"basis": {
"type": "TensorProduct",
"max_angular": 6,
"radial": {"type": "Gto", "max_radial": 7},
},
}
# Generate a SOAP power spectrum
calculator = SoapPowerSpectrum(**hypers)
rho2i = calculator.compute(frames)
# Makes a dense block
atom_soap = rho2i.keys_to_properties(["neighbor_1_type", "neighbor_2_type"])
atom_soap_single_block = atom_soap.keys_to_samples(keys_to_move=["center_type"])
# Sum over atomic centers to compute structure features
struct_soap = metatensor.sum_over_samples(
atom_soap_single_block, sample_names=["atom", "center_type"]
)
print("atom feature descriptor shape:", atom_soap.block(0).values.shape)
print(
"atom feature descriptor (all in one block) shape:",
atom_soap_single_block.block(0).values.shape,
)
print("structure feature descriptor shape:", struct_soap.block(0).values.shape)
atom feature descriptor shape: (12000, 2688)
atom feature descriptor (all in one block) shape: (20000, 2688)
structure feature descriptor shape: (500, 2688)
Perform atomic environment (i.e. sample) selection¶
Using FPS and CUR algorithms, we can perform selection of atomic environments. These are implemented in skmatter which uses data stored in the metatensor format.
Suppose we want to select the 10 most diverse environments for each chemical species.
First, we can use the keys_to_properties operation in metatensor to move the neighbor species indices to the properties of the TensorBlocks. The resulting descriptor will be a TensorMap comprised of three blocks, one for each chemical species, where the chemical species indices are solely present in the keys.
print("----Atomic environment selection-----")
print(atom_soap)
print(atom_soap.block(0))
----Atomic environment selection-----
TensorMap with 3 blocks
keys: center_type
8
22
56
TensorBlock
samples (12000): ['system', 'atom']
components (): []
properties (2688): ['neighbor_1_type', 'neighbor_2_type', 'l', 'n_1', 'n_2']
gradients: None
select 10 atomic environments for each chemical species.
# Define the number of structures *per block* to select using FPS
n_envs = 10
# FPS sample selection
for key, block in atom_soap.items():
sample_fps = sample_selection.FPS(n_to_select=n_envs, initialize="random").fit(
atom_soap.block(key).values
)
sample_fps_idxs = sample_fps.selected_idx_
# Print the selected envs for this block
print("atomic envs selected with FPS:\n")
selected_structures_idx = atom_soap.block(key).samples.values[sample_fps_idxs]
newblock = metatensor.slice_block(block, axis="samples", selection=sample_fps_idxs)
print("center_type:", key, "\n(struct_idx, atom_idx)\n", newblock.samples.values)
# CUR sample selection
for key, block in atom_soap.items():
sample_cur = sample_selection.CUR(n_to_select=n_envs).fit(
atom_soap.block(key).values
)
print("atomic envs selected with CUR:\n")
newblock = metatensor.slice_block(
block, axis="samples", selection=sample_cur.selected_idx_
)
print("center_type:", key, "\n(struct_idx, atom_idx)\n", newblock.samples.values)
atomic envs selected with FPS:
center_type: LabelsEntry(center_type=8)
(struct_idx, atom_idx)
[[113 36]
[140 21]
[339 23]
[ 68 18]
[339 16]
[347 37]
[341 17]
[339 24]
[436 22]
[285 20]]
atomic envs selected with FPS:
center_type: LabelsEntry(center_type=22)
(struct_idx, atom_idx)
[[341 12]
[166 15]
[216 8]
[285 9]
[ 19 9]
[198 12]
[ 55 13]
[466 9]
[324 8]
[433 13]]
atomic envs selected with FPS:
center_type: LabelsEntry(center_type=56)
(struct_idx, atom_idx)
[[341 4]
[407 0]
[238 3]
[289 6]
[ 40 7]
[407 7]
[140 2]
[451 7]
[339 3]
[436 6]]
atomic envs selected with CUR:
center_type: LabelsEntry(center_type=8)
(struct_idx, atom_idx)
[[ 77 30]
[339 36]
[267 32]
[436 19]
[339 24]
[341 17]
[ 55 21]
[ 68 20]
[336 33]
[198 36]]
atomic envs selected with CUR:
center_type: LabelsEntry(center_type=22)
(struct_idx, atom_idx)
[[166 15]
[216 8]
[285 9]
[ 70 10]
[326 10]
[ 10 39]
[466 10]
[170 14]
[130 10]
[ 40 10]]
atomic envs selected with CUR:
center_type: LabelsEntry(center_type=56)
(struct_idx, atom_idx)
[[407 0]
[219 7]
[172 3]
[339 5]
[ 77 3]
[289 6]
[339 6]
[296 1]
[ 40 7]
[436 2]]
Selecting from a combined pool of atomic environments¶
One can also select from a combined pool of atomic environments and structures, instead of selecting an equal number of atomic environments for each chemical species. In this case, we can move the ‘center_type’ key to samples such that our descriptor is a TensorMap consisting of a single block. Upon sample selection, the most diverse atomic environments will be selected, regardless of their chemical species.
print("----All atomic environment selection-----")
atom_soap_single_block = atom_soap.keys_to_samples(keys_to_move=["center_type"])
print("keys", atom_soap_single_block.keys)
print("blocks", atom_soap_single_block[0])
print("samples in first and only block", atom_soap_single_block[0].samples)
# Using the original SOAP descriptor, move all keys to properties.
# Define the number of structures to select using FPS
n_envs = 10
# FPS sample selection
sample_fps = sample_selection.FPS(n_to_select=n_envs, initialize="random").fit(
atom_soap_single_block.block(0).values
)
sample_fps_idxs = sample_fps.selected_idx_
selected_structures_idxs = atom_soap_single_block.block(0).samples["system"][
sample_fps_idxs
]
newblock = metatensor.slice_block(
atom_soap_single_block.block(0), axis="samples", selection=sample_fps.selected_idx_
)
print(
"atomic envs selected with FPS: \n (struct_idx, atom_idx, center_type) \n",
newblock.samples.values,
)
----All atomic environment selection-----
keys Labels(
_
0
)
blocks TensorBlock
samples (20000): ['system', 'atom', 'center_type']
components (): []
properties (2688): ['neighbor_1_type', 'neighbor_2_type', 'l', 'n_1', 'n_2']
gradients: None
samples in first and only block Labels(
system atom center_type
0 0 56
0 1 56
...
499 38 22
499 39 22
)
atomic envs selected with FPS:
(struct_idx, atom_idx, center_type)
[[ 68 12 22]
[407 0 56]
[ 77 30 8]
[289 6 56]
[166 15 22]
[216 8 22]
[140 21 8]
[460 4 56]
[339 18 8]
[466 34 8]]
Perform structure (i.e. sample) selection with FPS/CUR¶
Instead of atomic environments, one can also select diverse structures. We can use the sum_over_samples operation in metatensor to define features in the structural basis instead of the atomic basis. This is done by summing over the atomic environments, labeled by the ‘center’ index in the samples of the TensorMap.
Alternatively, one could use the mean_over_samples operation, depending on the specific inhomogeneity of the size of the structures in the training set.
print("----Structure selection-----")
struct_soap = metatensor.sum_over_samples(
atom_soap_single_block, sample_names=["atom", "center_type"]
)
print("keys", struct_soap.keys)
print("blocks", struct_soap[0])
print("samples in first block", struct_soap[0].samples)
# Define the number of structures to select *per block* using FPS
n_structures = 10
# FPS structure selection
sample_fps = sample_selection.FPS(n_to_select=n_structures, initialize="random").fit(
struct_soap.block(0).values
)
struct_fps_idxs = sample_fps.selected_idx_
print("structures selected with FPS:\n", sample_fps.selected_idx_)
# CUR structure selection
sample_cur = sample_selection.CUR(n_to_select=n_structures).fit(
struct_soap.block(0).values
)
struct_cur_idxs = sample_cur.selected_idx_
print("structures selected with CUR:\n", struct_cur_idxs)
# Slice structure descriptor along axis 0 to contain only the selected structures
struct_soap_fps = struct_soap.block(0).values[struct_fps_idxs, :]
struct_soap_cur = struct_soap.block(0).values[struct_cur_idxs, :]
assert struct_soap_fps.shape == struct_soap_cur.shape
print("Structure descriptor shape before selection ", struct_soap.block(0).values.shape)
print("Structure descriptor shape after selection (FPS)", struct_soap_fps.shape)
print("Structure descriptor shape after selection (CUR)", struct_soap_cur.shape)
----Structure selection-----
keys Labels(
_
0
)
blocks TensorBlock
samples (500): ['system']
components (): []
properties (2688): ['neighbor_1_type', 'neighbor_2_type', 'l', 'n_1', 'n_2']
gradients: None
samples in first block Labels(
system
0
1
...
498
499
)
structures selected with FPS:
[172 15 356 257 326 317 167 71 140 496]
structures selected with CUR:
[438 140 398 289 110 386 326 40 68 39]
Structure descriptor shape before selection (500, 2688)
Structure descriptor shape after selection (FPS) (10, 2688)
Structure descriptor shape after selection (CUR) (10, 2688)
Visualize selected structures¶
sklearn can be used to perform PCA dimensionality reduction on the SOAP descriptors. The resulting PC coordinates can be used to visualize the the data alongside their structures in a chemiscope widget.
# Generate a structure PCA
struct_soap_pca = PCA(n_components=2).fit_transform(struct_soap.block(0).values)
assert struct_soap_pca.shape == (n_frames, 2)
Plot the PCA map¶
Notice how the selected points avoid the densely-sampled area, and cover the periphery of the dataset
# Matplotlib plot
fig, ax = plt.subplots(1, 1, figsize=(6, 4))
scatter = ax.scatter(struct_soap_pca[:, 0], struct_soap_pca[:, 1], c="red")
ax.plot(
struct_soap_pca[struct_cur_idxs, 0],
struct_soap_pca[struct_cur_idxs, 1],
"ko",
fillstyle="none",
label="FPS selection",
)
ax.set_xlabel("PCA[1]")
ax.set_ylabel("PCA[2]")
ax.legend()
fig.show()

Creates a chemiscope viewer¶
# Selected level
selection_levels = []
for i in range(len(frames)):
level = 0
if i in struct_cur_idxs:
level += 1
if i in struct_fps_idxs:
level += 2
if level == 0:
level = "Not selected"
elif level == 1:
level = "CUR"
elif level == 2:
level = "FPS"
else:
level = "FPS+CUR"
selection_levels.append(level)
properties = chemiscope.extract_properties(frames)
properties.update(
{
"PC1": struct_soap_pca[:, 0],
"PC2": struct_soap_pca[:, 1],
"selection": np.array(selection_levels),
}
)
widget = chemiscope.show(
frames,
properties=properties,
settings={
"map": {
"x": {"property": "PC1"},
"y": {"property": "PC2"},
"color": {"property": "energy"},
"symbol": "selection",
"size": {"factor": 50},
},
"structure": [{"unitCell": True}],
},
)
widget.save("sample-selection.json.gz")
# display, if in notebook or sphinx
widget
/home/runner/work/atomistic-cookbook/atomistic-cookbook/.nox/sample-selection/lib/python3.11/site-packages/chemiscope/structures/_ase.py:134: UserWarning: the following structure properties are only defined for a subset of frames: ['stress']; they will be ignored
all_names = _ase_list_structure_properties(frames)
/home/runner/work/atomistic-cookbook/atomistic-cookbook/.nox/sample-selection/lib/python3.11/site-packages/chemiscope/structures/__init__.py:93: UserWarning: the following structure properties are only defined for a subset of frames: ['stress']; they will be ignored
return _ase_list_structure_properties(frames)
Perform feature selection¶
Now perform feature selection to reduce the size of the features. In this example we will go back to using the descriptor decomposed into atomic environments, as opposed to the one decomposed into structure environments, but only use FPS for brevity.
print("----Feature selection-----")
print("keys", atom_soap_single_block.keys)
print("blocks", atom_soap_single_block[0])
print("samples in first block", atom_soap_single_block[0].properties)
# Define the number of features to select
n_features = 200
# FPS feature selection
feat_fps = feature_selection.FPS(n_to_select=n_features, initialize="random").fit(
atom_soap_single_block.block(0).values
)
feat_fps_idxs = feat_fps.selected_idx_
atom_soap_single_block_fps = metatensor.slice_block(
atom_soap_single_block.block(0), axis="properties", selection=feat_fps_idxs
)
# Slice atomic descriptor along axis 1 to contain only the selected features
print(
"atomic descriptor shape before selection ",
atom_soap_single_block.block(0).values.shape,
)
print(
"atomic descriptor shape after selection ",
atom_soap_single_block_fps.values.shape,
)
----Feature selection-----
keys Labels(
_
0
)
blocks TensorBlock
samples (20000): ['system', 'atom', 'center_type']
components (): []
properties (2688): ['neighbor_1_type', 'neighbor_2_type', 'l', 'n_1', 'n_2']
gradients: None
samples in first block Labels(
neighbor_1_type neighbor_2_type l n_1 n_2
8 8 0 0 0
8 8 0 0 1
...
56 56 6 7 6
56 56 6 7 7
)
atomic descriptor shape before selection (20000, 2688)
atomic descriptor shape after selection (20000, 200)
Total running time of the script: (0 minutes 22.971 seconds)